Course: VSC Number Theory and Matrix Algebra

Semester: I Credits:2 Subject Code: BSVSCCSM12301 Lectures: 30

Course Outcomes:

At the end of this course, the learner will be able to:

- CO1- Classify different types of relations and apply the concepts of divisibility in Number Theory and its properties.
- CO2- Understand prime numbers, congruence relations and define real life problems using recurrence relation.
- CO3- Explore the equivalence between vector equations and matrix equations.
- CO4-Learn computations with matrices; apply different methods such as row echelon and LU decomposition to solve linear algebraic systems.

Unit 1: Congruence and Divisibility	15
Well ordering principles	
Division Algorithm (without proof)	
 Divisibility and its properties. 	
• Euclid's Lemma (Without proof).	
 Definition of G.C.D and L.C.M, Expressing G.C.D of two integers as a linear combination of the two integers. 	
Relatively prime integers and Euclid's Lemma generalisation	
 Congruence relation and its properties, Residue Classes: Definition, Examples, addition and multiplication modulo n and composition tables. 	
 Solve Congruence equations using Chinese remainder Theorem. 	
 Euler's and Fermat's Theorem(Without proof) examples 	
 Homogenous Recurrence Relation, types and solutions. 	
• Assignment	

Unit 2:Matrices	15
Systems of Linear Equations	
Row Reduction and Echelon Forms	
 Vector Equations 	
The Matrix Equation	
Solution Sets of Linear Systems	
Applications of Linear Systems	
Linear Independence	
Linear Models in Business, Science, and Engineering	
 Solving system of linear Equations using LU Decomposition 	
• Assignment	

Department	Name	Signature
B.Sc. (Computer Science)	Gitanjali Phadnis	R.M.Phadnis

Recommended Text Books:

- David C. Lay, Steven R. Lay Judi J.Mc Donald Linear Algebra and its Application, Pearson Publication, Fifth Edition, 2016.
- David M. Burton, Elementary Number Theory, McGraw-Hill Science/Engineering/Math; 7th Edition February 4, 2010.

Reference Books:

- Bernard Kolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman, Discrete Mathematics Structure Pearson Education, 5th Edition.
- Zukerman, An Introduction to the Theory of Numbers, WileyPublication, 4th Edition

E-Resources:

- https://swayam.gov.in/
- https://nptel.ac.in/
- http://ocw.mit.edu

Board of Studies	Name	Signature	
Chairperson (HoD)	Gitanjali Phadnis	R-M-Phaduis	
Faculty	Vrushali Paranjpe	Venetrale	
Subject Expert (Outside SPPU)	Dr. Prashant Malavadkar	F 210612	
Subject Expert (Outside SPPU)	Dr. Machchhindra Gophane	AR 2/6/23	
VC Nominee (SPPU)	Dr. Borse Y. M.	mores ?	
Industry Expert	Ms. Jaina Shah	Java \$ 106/2023	
Alumni	Ms. Mamata Choudhary	2/06/207	

Board of Studies	Department	Name	Signature
Chairperson (HoD)	B.Sc. (Computer Science)	Gitanjali Phadnis	f. M. Phadris
	57	2	2006/2072